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Abstract— In recent years, convolutional neural networks
(CNNs) have been widely used in hyperspectral image classi-
fication (HSIC). However, the size of the convolutional kernel in
CNNs is fixed, which makes it difficult to capture the dependence
of long-range feature information. In addition, the extracted fea-
tures often contain a large amount of redundant information. In
order to alleviate these issues, a feature complementary attention
network based on adaptive knowledge filtering (FCAN_AKF)
is proposed in this article. First, in order to alleviate the
problem that CNNs are difficult to capture the dependence
between close-range and long-range spectral features due to
the limited receptive field, a nonlocal band regrouping (NBR)
strategy is designed. NBR enables CNN to capture nonlocal
spectral features in a limited receptive field to establish the
interdependence between close-range and long-range spectral
features. In addition, the nonlocal features extracted after using
NBR and the local features of the original hyperspectral image
are integrated to achieve complementation between nonlocal
features and local features. Then, in order to eliminate the
interference of redundant information on the network, a dual-
pyramid spectral–spatial attention (DPSSA) module is proposed
and used to capture spectral–spatial attention. Next, an adaptive
knowledge filter (AKF) is designed, which can adaptively further
filter out redundant information and enhance feature information
that is beneficial for classification. Finally, extensive experiments
were conducted on three challenging datasets, demonstrating that
the proposed method has stronger competitiveness compared to
some state-of-the-art HSIC methods.

Index Terms— Adaptive knowledge filter (AKF), convolutional
neural network (CNN), dual-pyramid spectral–spatial attention
(DPSSA), hyperspectral image classification (HSIC), nonlocal
band regrouping (NBR).
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I. INTRODUCTION

WITH the rapid development of hyperspectral remote
sensing technology, hyperspectral images (HSIs) have

been applied to more and more fields [1], [2], for example,
coastal environmental monitoring [3], ecosystem protection
[4], crop monitoring [5], [6], [7], [8], and medical diagnosis
[9], [10]. The premise of these applications is that the ground
objects in HSIs are accurately identified and classified. In
the early days, some classic machine learning methods were
mainly used for hyperspectral image classification (HSIC),
for example, distance classifier [11], maximum likelihood
classifier [12], and sparse representation classification (SRC)
[13], [14]. Although these methods have simple principles and
are easy to implement, they overly rely on manual features and
prior information, resulting in poor generalization. In addition,
among these methods, only spectral information is used for
classification, and the importance of spatial information in
HSIs is ignored, which limits their classification performance.

In the past decade, convolutional neural networks (CNNs)
have gradually become a research hotspot in HSIC [15], [16],
[17]. The features of HSIs can be autonomously fit through
the training of CNNs, while the traditional manual feature
method is avoided, thereby improving the generalization of
the network. In [18], a deep convolutional network was used
for HSIC. Since hundreds of spectral bands are included in
each pixel of the HSIs, there are significant differences in the
spectral features of pixels corresponding to different ground
objects. Therefore, each pixel of the HSIs is considered as a
1-D speech signal input by this method, and a 1-D convo-
lutional neural network (1D-CNN) is used to extract spectral
features of the HSIs. Finally, a more competitive classification
performance compared to classical classifiers was achieved by
this method. However, HSIs are prone to external interference
during imaging, and spectral information between different
ground objects is not completely separated. Therefore, not only
the spectral features need to be extracted for HSIC, but also
the extraction of spatial features needs to be paid attention
to. In [19], a 3-D convolutional neural network (3D-CNN)
was proposed. The 3-D convolution is used by this method
to simultaneously extract spatial–spectral features of HSIs,
which significantly improves the classification performance
compared to 1D-CNN. In early CNNs, convolutional layers
were directly stacked to improve the classification performance
of HSIs, which easily led to over-fitting of the network.
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To this end, a spectral–spatial residual network (SSRN) was
proposed [20]. SSRN constructs a network through residual
structure, and the deep features of HSIs can be better extracted.
In addition, in [21], a fast dense connection network was
proposed, and the same feature of HSIs was multiplexed
through dense connection to avoid over-fitting of the network.

Recently, in order to extract important features of HSIs,
a series of attention mechanism [22], [23], [24], [25] networks
has been applied to HSIC. In [26], two different branches were
used to capture the spatial and spectral attention of HSIs,
avoiding mutual interference of spatial–spectral information.
In [27], a double-branch dual attention (DBDA) network was
proposed. Similar to [26], in DBDA, spatial–spectral attention
is also captured through two different branches. The difference
is that the spatial–spectral features of DBDA are captured
through adaptive self-attention, and better classification per-
formance is achieved. Subsequently, a self-attention network
using a network search strategy was proposed [28]. The
optimal structure of the network for this method is determined
by the network framework search strategy to achieve the
optimal classification results. In order to fully utilize the
multiscale features of HSIs, a hierarchical residual attention
network was proposed [29]. However, due to the sensitivity
of convolutional kernels to spatial rotation, the classification
performance of conventional attention networks in rotated
HSIs is poor. For this reason, a rotation invariant attention
network (RIAN) was proposed [30], and the rotation invariant
spatial–spectral attention was extracted by RIAN using a
correction attention module, which effectively alleviated the
problem of spatial rotation. In addition, in order to capture
the bidirectional correlation of the internal spectral of HSIs,
an attention network based on bidirectional short-term memory
was proposed [31].

Although some problems have been solved by these meth-
ods, there are still some challenges in the application of CNNs
in HSIC.

1) The receptive field of CNNs is limited by the size of
the convolution kernel, and it is difficult for the limited
receptive field to capture the interdependence between
the close-range spectral information and the long-range
spectral information.

2) Although the attention mechanism can suppress some
redundant information, there is still some redundant
information in the features extracted by CNNs. This
redundant information can affect the judgment of the
network, limiting its classification performance.

For the first challenge, some transformer-based classifi-
cation methods were used in HSIC in the past two years
[32], [33], [34], [35], [36]. Considering the transformer’s
strong sensitivity to capturing contextual correlations, it has
been introduced into HSIC to capture the interdependence
between close-range and long-range spectral information. In
[37], a SpectralFormer network was proposed. In this method,
the spectral band was first regarded as a long sequence,
and then, the transformer network was used to capture the
correlation of spectral context. Although spectral contextual
information can be effectively learned by SpectralFormer, the
local information of HSIs is ignored. Therefore, some HSIC

methods that integrate CNN and transformer were proposed
to combine local and nonlocal features of HSIs. In [38], HSIs
were effectively classified by combining CNN with trans-
former. Although the interdependence between close-range
spectral information and long-range spectral information can
be established by these methods, the interference of redundant
information on the network has not been effectively addressed.

In order to alleviate these issues, a feature complemen-
tary attention network based on adaptive knowledge filtering
(FCAN_AKF) is proposed in this article. First, aiming at
the problem of limited receptive field of CNNs, a nonlocal
band regrouping (NBR) strategy was designed. NBR achieves
the interaction between close-range spectral information and
long-range spectral information by regrouping spectral infor-
mation. In addition, two different branches are used to extract
nonlocal features after NBR and local features of the original
HSIs to achieve complementary features. Then, in order to
suppress the interference of redundant information on the
network, a dual-pyramid spectral–spatial attention (DPSSA)
module is proposed to capture spectral–spatial attention. Next,
an adaptive knowledge filter (AKF) is designed to further
remove redundant information and enhance important feature
information.

The main contributions of this article include the following
three parts.

1) In order to establish the interdependence between
close-range spectral information and long-range spectral
information of HSIs under a limited receptive field, an
NBR strategy is proposed. In addition, two different
branches are used to extract nonlocal features and local
features, respectively, in order to achieve complementary
features in HSIs.

2) A DPSSA module is designed. The spectral–spatial
attention is modeled by DPSSA in an autocorrelation
manner. And a multiscale pooling pyramid is embedded
in attention to reduce information loss during feature
extraction.

3) An AKF is designed. Redundant information is adap-
tively removed by AKF through network training iter-
ations, and feature information that is beneficial for
classification is enhanced.

The rest of this article is arranged as follows. In Section II,
the overall framework of FCAN_AKF, NBR, DPSSA, and
AKF is discussed in detail. In Section III, three HSI datasets
and some hyperparameter settings of the network are intro-
duced in detail. Then, NBR, DPSSA, and AKF are con-
ducted some ablation experiments. Finally, the effectiveness
of FCAN_AKF is verified. In Section IV, the conclusions are
given.

II. METHODOLOGY

In order to capture the interdependence between close-range
spectral information and long-range spectral information,
and alleviate the interference of redundant information on
the network to achieve effective classification of HSIs,
an FCAN_AKF is proposed. First, an NBR strategy is pro-
posed, and two different branches are used to extract nonlocal
features from NBR and local features from the original

Authorized licensed use limited to: Harbin Engineering Univ Library. Downloaded on November 16,2023 at 06:18:22 UTC from IEEE Xplore.  Restrictions apply. 



SHI et al.: FCAN_AKF FOR HSIC 5527219

Fig. 1. Overall framework of FCAN_AKF.

image to achieve feature complementary. Then, a DPSSA is
used to capture spectral–spatial attention. Finally, an AKF
was designed to further alleviate the interference of redun-
dant information. In this section, the overall framework of
FCAN_AKF, NBR, DPSSA, and AKF will be introduced in
detail.

A. Overall Framework of FCAN_AKF

The proposed FCAN_AKF network is shown in Fig. 1.
Specifically, FCAN_AKF takes patches as input. Therefore,
the original HSIs are first divided into different patches, and
the patches are input in a batch size of 64. Then, in order
to make the network establish the long-range interaction
relationship of spectral features under the limited receptive
field, an NBR strategy is proposed. NBR first analyzes the cor-
relation between spectral bands and groups them based on the
correlation. Then, the spectrum in each group are regrouped
again to enable the network to capture the interdependence
between close-range spectral information and long-range spec-
tral information. In addition, in order to achieve complemen-
tary between nonlocal features and local features, two branches

Fig. 2. Detailed network structure of nonlocal feature extraction and local
feature extraction.

are designed to extract nonlocal features after band regrouping
and local features of the original HSIs, respectively. In order
to simplify the network, the network structure for extracting
nonlocal features and the network structure for extracting local
features adopt the same construction. The detailed structure is
shown in Fig. 2.

In detail, 3-D convolution kernels of multiple scales are
used to extract spectral–spatial features at the same time, and
the dense connection structure is combined to multiplex the
same feature, avoiding network over-fitting. In addition, deep
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separable convolutions (DSCs) are also embedded to reduce
network parameters. Specifically, in DSC, a 3-D depthwise
convolution is first utilized to extract the features of input
channels one by one, and then, a 3-D pointwise convolution
is adopted for channel feature fusion. Compared with conven-
tional convolutions, DSC can significantly reduce the number
of network parameters while ensuring the same classification
performance. Then, a pointwise convolutional layer is used
to fuse local and nonlocal features. The continuous operations
of 2-D pointwise convolution, BatchNorm, and rectified linear
unit (ReLU) are included in the pointwise convolution layer.
Next, a DPSSA was used to model spectral–spatial attention.
DPSSA includes dual-pyramid spectral attention (DPSpe_A)
and dual-pyramid spatial attention (DPSpa_A). In general,
DPSpe_A is first used to capture spectral attention by DPSSA,
and then, DPSpa_A is used to model spatial attention. In
order to better integrate spectral–spatial attention, a residual
structure was introduced into DPSSA. Subsequently, in order
to further eliminate the interference of redundant information,
an AKF was designed. AKF can adaptively filter out redundant
information that interferes with network classification and gain
information that is beneficial for classification by iteratively
updating parameters N and T through network training.
Specifically, T and N here represent the threshold and gain
values of AKF, respectively. Finally, classification is carried
out through the fully connected layer.

B. NBR Strategy

In the research field of HSIC, the extraction of spectral
information is extremely crucial. As shown in Fig. 3, the
spectral curves corresponding to different ground objects in the
HSIs are not completely separated, and these overlapping spec-
tral information will seriously interfere with the classification
of the network. Therefore, in [39], a spectral interclass slicing
method was proposed for removing spectral redundancy infor-
mation. However, the adaptation of spectral interclass slicing
was still not achieved, and there are certain limitations to
its generalization. Therefore, this article alleviates the defi-
ciency of spectral redundancy information by establishing a
dependence relationship between close-range and long-range
spectral information. However, the receptive field of CNNs
is limited by the size of the convolutional kernel, which
makes it difficult to establish the long-range dependence of
spectral information. As shown in Fig. 3, assuming that the
band dependence relationship in the box connected by the
red dashed line needs to be established, it is difficult to
achieve using existing methods. Therefore, an NBR strategy
is proposed in this article.

Specifically, the original bands are first grouped based on
the correlation between bands. In this article, a simple and
effective spectral grouping method [40], [41], [42] is adopted.
As shown in Fig. 4, each yellow box is grouped into a
group in different datasets. Specifically, the spectral bands of
the Indian Pines (IN) dataset are grouped into three groups
(1–35 as a group, 36–104 as a group, and 105–200 as a group);
the spectral bands of the Salinas Valley (SV) dataset are also
grouped into three groups (1–40 as a group, 41–104 as a group,

and 105–204 as a group); and the spectral bands of the Pavia
University (UP) dataset are grouped into two groups (1–40
as a group and 41–104 as a group). The process of spectral
correlation analysis can be expressed as

C(i, j) = Cov(i, j)/
√

Cov(i, i) · Cov( j, j). (1)

Among them, C(i, j) represents the correlation between the
i th and j th bands. Cov(·) represents the covariance operation.
Subsequently, the spectrum were regrouped again within each
group. Specifically, each group is once again evenly divided
into B1, B2, and B3. Then, nonadjacent band groups are
inserted between adjacent band groups, that is, B1 is inserted
between adjacent groups B2 and B3. In this way, CNNs
can establish the dependence of nonlocal spectral bands even
through a limited receptive field. This process can be expressed
as

Bn = Slice−1(xC)

∣∣∣∣ ⌈n(b/3)⌉

⌈(n − 1)(b/3)⌉
(2)

x ′
= NBR(B1, B2, B3). (3)

Among them, Slice−1(·) represents the spectral slicing oper-
ation. xC is the output of the correlation group. ⌈·⌉ is an
upward rounding function, and b represents the number of
spectral bands. n represents the number of groups for spectral
regrouping. Bn is the result obtained by grouping. NBR(·)

represents the nonlocal band connection operation that inserts
B1 between adjacent groups B2 and B3.

C. Double-Pyramid Spectral–Spatial Attention

The attention mechanism is a strategy-designed inspired
by human vision. The attention mechanism can enable the
network to focus on important features that are beneficial
for classification and suppress irrelevant features that interfere
with classification. In other words, the attention mechanism
can alleviate the interference of redundant information and
effectively improve the classification performance of the net-
work. In [43], an effective attention was proposed, which
has achieved good classification performance. However, the
computational complexity of the network is relatively high.
Therefore, a DPSSA is designed in this article. As shown in
Figs. 5 and 6, DPSSA consists of DPSpe_A and DPSpa_A.
In general, spectral attention is first modeled by DPSpe_A,
and then, spatial attention is captured by DPSpa_A. Specif-
ically, a skip connection is adopted in DPSpe_A to reduce
information loss, which is beneficial for capturing subsequent
spatial attention. In addition, in order to achieve a better fusion
of spectral–spatial attention, a residual structure was used
between DPSpe_A and DPSpa_A. Specifically, in DPSpe_A,
the key tensor K , query tensor Q, and value tensor V are
obtained through a linear transformation of the input. This
process can be described as

K = (WK · r(xin))
0, xin ∈ Rb×h×w (4)

Q = WQ · r(xin), xin ∈ Rb×h×w (5)

V = WV · r(xin), xin ∈ Rb×h×w. (6)

Among them, b, h, and w represent the band, height,
and width, respectively. WK , WQ , and WV all represent the
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Fig. 3. Spectral curves of different datasets: (a) spectral curve of IN dataset; (b) spectral curve of SV dataset; and (c) spectral curve of UP dataset. (Among
them, curves of different colors correspond to the spectra of different ground objects.)

Fig. 4. Correlation analysis of spectra from different datasets: (a) IN dataset; (b) SV dataset; and (c) UP dataset. (The spectral correlation gradually increases
from dark to bright.)

operation of the linear transformation layer. r(·) is the trans-
formation of the spatial dimension of input xin from h × w

to n, that is, n = h × w. Then, unlike [43], in order to
reduce the computational complexity of the network, a dual
pyramid is used to capture attention mask and model advanced
feature V ′.

Specifically, in order to avoid the loss of critical information,
a multiscale pooling method is adopted for dual-pyramid

pooling. This process can be described as

K ′
= P1(K )||P2(K )||P4(K )||P8(K ) (7)

V ′
= P1(V )||P2(V )||P4(V )||P8(V ). (8)

Among them, P1, P2, P4, and P8 represent the adaptive
average pooling with scales 1, 2, 4, and 8, respectively.
|| represents a connection operation. Next, K ′ and Q are
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Fig. 5. Double-pyramid spectral attention.

Fig. 6. Double-pyramid spatial attention.

used to obtain spectral attention masks by point multiplication.
Finally, spectral attention masks are used to weight advanced
feature V ′. In addition, a skip connection is used at the final
stage to prevent the network from over-fitting. This process
can be expressed as

xspe = relu
(
r(xin) + sf

(
K ′

· Q
)

· V ′
)
. (9)

Among them, sf(·) represents the softmax function. relu(·)

is the activation function. xspe is the final spectral atten-
tion obtained. In terms of network computing complexity,
DPSpe_A mainly relies on the double-pyramid pooling to

reduce the computational complexity of the network. The com-
putational complexity of DPSpe_A can be expressed as

O = o1
(
b × n2

× 15
)

+ o2
(
n × b × 152). (10)

The computational complexity without using
double-pyramid pooling can be expressed as

O ′
= o1

(
b2

× n2)
+ o2

(
n3

× b
)
. (11)

Among them, o1 is the computational complexity of the
spectral attention mask. o2 is the computational complexity
of the spectral attention. In contrast, the computational com-
plexity of DPSpe_A using double-pyramid pooling has been
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Fig. 7. Schematic of AKF.

Fig. 8. (a) OA corresponding to the use of different N and T by KF on the IN dataset. (b) Adaptive flowchart of AKF on IN dataset.

significantly reduced. Specifically, the computational complex-
ity of attention masks has been reduced by b/15 times, and
the complexity of attention has been reduced by n2/152 times.
In this article, in order to simplify the network structure, the
structures of DPSpa_A and DPSpe_A are similar. As shown
in Figs. 4 and 5, the difference is that the double pyramid
pooling layer in DPSpa_A acts on the spatial dimension, while
the double pyramid pooling layer in DPSpe_A acts on the
spectral dimension. Therefore, this article will not repeat the
description of DPSpa_A.

D. Adaptive Knowledge Filter

In order to alleviate the interference of redundant infor-
mation on the network, attention mechanisms have provided
effective solutions. However, the attention mechanism relies
on the network’s feature extraction ability, and redundant
information cannot be directly removed. Recently, a feature
filter [44] has been used to eliminate redundant information.
Although the feature filter proposed in [44] has achieved some
achievements in the application of HSIC, this method has
not achieved adaptation. This makes the feature filter require
manual adjustment of parameters to adapt to different datasets,
and it is also difficult to integrate into other networks. In
addition, the feature filter changes all feature values greater

than the threshold to 1, which increases the risk of network
interference from redundant information that has not been fully
filtered.

In this article, an AKF is proposed to further alleviate
the interference of redundant information on the network. As
shown in Fig. 7, the threshold T and gain value N are first
set for the proposed knowledge filter (KF). Specifically, the
feature values of the input filter are represented as xDPSSA.
First, the sigmoid function is used to normalize xDPSSA to
obtain feature X , which is then input into the KF. When the
feature values of the input KF are greater than T , the input
feature values will be augmented (i.e., the feature values X
will become N ∗ X). On the contrary, when the input feature
values of the KF are less than T , the input feature values will
be set to 0. This process can be described as

X = sigmiod(xDPSSA), xDPSSA ∈ Rb×hw (12)

X =

{
N ∗ X, X ≥ T
0, X < T .

(13)

Subsequently, in order to improve the generalization of the
network and enable KFs to be widely applied in HSIC, an AKF
is proposed in this article. The adaptive process of AKF is
shown in Algorithm 1.
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Algorithm 1 The Adaptive Process of AKF
Input: Input x ∈ Rh×w×b.
Output: parameters of the optimal model.
1. Initialization, Flag = 0, N Flag = 1, T Flag =

0, BO A = 0, RO A = 0, S = 1, s = 0.1.
2. for i=1 to epoch do
3. Perform training on the FCAN_AKF model. Update
and save training parameters.
4. Perform validation of the FCAN_AKF model. Calcu-
late the loss value and save the RO A.
5. Determine if the loss value has decreased. If the loss
value decreases, make Flag = 0 and perform 2. Otherwise,
Flag = Flag + 1 is performed.
6. Determine if Flag is equal to 10. If Flag = 10, then
Flag = 0 will be performed. Otherwise, 2 is performed.
7. Determine if N Flag is equal to 1. If N Flag = 1, then
8 will be performed. Otherwise, 9 is performed.
8. Determine if RO A is greater than BO A. If RO A >

BO A, then BO A = RO A will be performed. In addition,
make N Flag = 0, T Flag = 1, N = N + S and perform 2.
Otherwise, makeN Flag = 0, T Flag = 1, N = N − 2S and
perform 2.
9. Determine if T Flag is equal to 1. If T Flag = 1, then
10 will be performed. Otherwise, 2 is performed.
10. Determine if RO A is greater than BO A. If RO A >

BO A, then BO A = RO A will be performed. In addition,
make T Flag = 0, N Flag = 1, T = T + s and perform 2.
Otherwise, make T Flag = 0, N Flag = 1, T = T − 2s and
perform 2.

end for

In Algorithm 1, Flag, NFlag, and TFlag represent, in turn,
the flag for performing AKF, the flag for updating N , and the
flag for updating T . When Flag = 10, the adaptation of the
KF is started. When NFlag = 1, the update of gain value N
is performed. When TFlag = 1, the update of the threshold is
performed. BOA and ROA are the best prediction accuracy and
current prediction accuracy of the model in sequence. S and s
are the update steps of N value and T value, respectively.
Epoch is the maximum number of training iterations for
the network. In general, the adaptation of AKF involves
cross-updating N and T through network training iterations
to adaptively filter out redundant information and enhance
important information. Specifically, the network parameters
are first saved through network training and then used for
validation. During the validation phase, the loss value of the
current network will be calculated, and the prediction accuracy
of the current network will be saved. Then, the network will
be judged whether to preconvergence (verifying that the loss
continuously increases ten times, i.e., Flag = 10). When
the network reaches preconvergence, the N and T values of
AKF will be cross-updated. This process is repeated until the
network training is completed. Specifically, in order to avoid
local optima in the classification performance of the network,
a method of cross-updating N and T is designed. In addition,

the update step size of N and T values can be adjusted in
AKF.

As shown in Fig. 8(b), the adaptive update process of N and
T is demonstrated on the IN dataset. Among them, the red,
orange, and purple guidelines represent the adaptive process of
the network under different initial N and T values. As shown
in Fig. 8(b), regardless of how the initial values of N and T
are set, the optimal classification performance of the network
can ultimately be obtained through AKF adaptation. Taking
the red guideline as an example, the classification accuracy
corresponding to the red dots is the classification accuracy
corresponding to the initial N and T (i.e., the classification
accuracy corresponding to the network when N = 1 and
T = 0.1). Then, the optimal classification performance of the
network is obtained through iterative training of the network
and adaptive filtering of redundant information through cross-
updating N and T .

In short, the interference of redundant information on the
network can be effectively alleviated by the proposed AKF. In
addition, compared to the feature filter proposed in [44], the
AKF proposed in this article can be implemented adaptively.
And in AKF, the linear gain method is adopted to enhance fea-
tures larger than the threshold, which preserves the differences
between the obtained features to further remove redundant
information in the next adaptive filtering.

III. EXPERIMENTATION AND ANALYSIS

In order to verify the effectiveness of the FCAN_AKF,
experiments and analyses were conducted on the proposed
method in this section. First, three datasets are presented in
detail. Then, the details of the hyperparameter setting of the
network are given. Subsequently, the ablation experiment was
used to analyze the effectiveness of the proposed module
in this article. In addition, the classification performance of
the proposed network has been analyzed in detail. Finally,
this article proves that the FCAN_AKF is more competi-
tive compared to some state-of-the-art methods. In particular,
in order to avoid the contingency of the experiment, the results
of all experiments are the average results of ten repeated
experiments. And all experiments were conducted in the same
experimental environment. Specifically, the experiment was
equipped with NVIDIA GeForce RTX 3070 and the compi-
lation software was PyCharm 2020. The running environment
of the code is in PyTorch 1.10.0 and Python 3.7.12.

A. HSI Dataset and Evaluation Indicators for Classification
Performance

This article verifies the classification performance of the
FCAN_AKF on three challenging datasets, including IN, SV,
and UP. IN has 200 consecutive spectral bands, 16 classes, and
10 249 labeled pixels. SV has 204 consecutive bands and also
includes 16 classes, covering 54 129 pixels. UP has 104 bands,
and it includes nine classes. The number of pixels covered
by its ground objects is 42 776. The detailed information of
the three datasets is shown in Figs. 9–11. In this article,
a unified proportion of training and testing samples is used
in all experiments. Specifically, 3% of the training samples
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Fig. 9. Details of the IN.

Fig. 10. Details of the SV.

were used on the IN. The 1% of the training samples were
used on the SV and UP. In addition, in order to quantitatively
evaluate the classification performance of the network, three

important evaluation indicators are used in this article. This
includes overall classification accuracy (OA), average accuracy
(AA), and KAPPA coefficient.
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Fig. 11. Details of the UP.

Fig. 12. Impact of different training batches on classification performance of networks under different learning rates: (a) experimental results on the IN
dataset; (b) experimental results on the SV dataset; and (c) experimental results on the UP dataset.

B. Hyperparameter Setting

In CNNs, the influence of hyperparameter on model training
cannot be ignored. In order to obtain the best classifica-
tion performance of the network, it is necessary to set an
appropriate hyperparameter for the network. First, the epoch
of FCAN_AKF is set to 400. The impact of learning rate
and training batch on the classification performance of the
proposed network on different datasets is shown in Fig. 12.
As shown in Fig. 12(a), on the IN, when the learning rate of the
FCAN_AKF is determined, the classification performance of
the network first increases and then decreases as the batch size

of the network input increases. And when the input batch size
is 64, the best classification performance is achieved. Simi-
larly, when the input batch size is determined, the classification
performance of the network first increases and then decreases
as the learning rate increases. And when the learning rate is
5e−4, the best network performance is achieved. As shown in
Fig. 12(a) and (b), the impact of learning rate and training
batch size on the classification performance of the proposed
network on the SV and UP datasets is similar to that on the
IN dataset. Therefore, the learning rate and input batch size
of FCAN_AKF are set to 5e−4 and 64, respectively.
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TABLE I
ABLATION EXPERIMENT (

√
INDICATES WITH CORRESPONDING MODULE, AND — INDICATES WITHOUT CORRESPONDING MODULE)

Fig. 13. Impact of the size of network input patch. (The size of the patch
is P × P .)

In addition, the impact of the size of input patch on the clas-
sification performance of CNNs cannot be ignored. Therefore,
in Fig. 13, the impact of input patch size on FCAN_AKF
classification performance was explored for different datasets.
In general, on the three datasets, the classification performance
of the network first increases and then decreases as the
input patch size increases. And when the size of the patch
is 9 × 9, the optimal classification performance is obtained
by the proposed network. Therefore, the input patch size of
FCAN_AKF is set to 9 × 9.

C. Effectiveness Analysis of the Proposed Modules

Some ablation experiments were conducted by the proposed
modules. As shown in Table I, eight sets of experiments
are conducted on each dataset. First, the experimental results
of experiment 1 FCAN_AKF (basic network, i.e., without
NBR, AKF, and DPSSA) and experiment 2 FCAN_AKF (only
with DPSSA module) were compared, and it was found that
the classification accuracy of the network can be effectively

improved by DPSSA on three different datasets. Specifically,
on the IN dataset, when DPSSA is used, the classification
accuracy of the network is improved by 0.5% compared
to when DPSSA is not used. Similarly, on the SV dataset,
OA improved by 0.45%. On the UP dataset, OA improved
by 0.31%. The classification performance of networks can
be effectively improved by DPSSA because it can enhance
important features through attention and effectively suppress
unimportant features. In addition, DPSSA reduces information
loss through multiscale pyramid pooling. Subsequently, exper-
iment 1 FCAN_AKF (basic network, i.e., without NBR, AKF,
and DPSSA) and experiment 4 FCAN_AKF (only with NBR
strategy) were compared, and the effectiveness of NBR strat-
egy was also verified. Obviously, on the IN dataset, compared
to FCAN_AKF without NBR strategy, the OA of FCAN_AKF
with NBR strategy increased by 0.34%. Similarly, on the other
two datasets, compared to FCAN_AKF without NBR strat-
egy, FCAN_AKF with NBR strategy showed varying degrees
of improvement in classification accuracy. This is because
NBR can enable the network to capture nonlocal spectral
features by regrouping the original spectral, thereby establish-
ing interdependence between close-range spectral information
and long-range spectral information. Moreover, the nonlocal
features after spectral regrouping are combined with the local
features of the original HSIs, achieving feature fusion and
complementarity. Therefore, the classification performance of
the network can be effectively improved. Finally, experiment 1
FCAN_AKF (basic network, i.e., without NBR, AKF, and
DPSSA) was compared with experiment 3 FCAN_AKF (only
with AKF module), and the results showed that compared to
FCAN_AKF without AKF, FCAN_AKF with AKF showed
significant improvement in classification performance on all
three datasets. This is because AKF can adaptively remove
redundant information and gain important feature information.

In addition, to verify whether NBR, AKF, and DPSSA
will interfere with each other in FCAN_AKF, exper-
iment 5 FCAN_AKF (with DPSSA and AKF) and
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Fig. 14. Visualization of classification results for different strategies on the IN dataset: (a) FCAN_AKF (basic network, i.e., without NBR, AKF, and DPSSA);
(b) FCAN_AKF (only with DPSSA module); (c) FCAN_AKF (with DPSSA and AKF); and (d) complete FCAN_AKF.

Fig. 15. Visualization of classification results for different strategies on the SV dataset: (a) FCAN_AKF (basic network, i.e., without NBR, AKF, and
DPSSA); (b) FCAN_AKF (only with DPSSA module); (c) FCAN_AKF (with DPSSA and AKF); and (d) complete FCAN_AKF.

Fig. 16. Visualization of classification results for different strategies on the UP dataset: (a) FCAN_AKF (basic network, i.e., without NBR, AKF, and
DPSSA); (b) FCAN_AKF (only with DPSSA module); (c) FCAN_AKF (with DPSSA and AKF); and (d) complete FCAN_AKF.

experiment 8 complete FCAN_AKF were compared, exper-
iment 6 FCAN_AKF (with NBR and DPSSA) and
experiment 8 complete FCAN_AKF were compared, and
experiment 7 FCAN_AKF (with NBR and AKF) and exper-
iment 8 complete FCAN_AKF were compared, respectively.
Obviously, NBR, AKF, and DPSSA do not interfere with each
other in FCAN_AKF, and the classification accuracy of the
network can be effectively improved in any situation.

In order to more intuitively analyze the impact of the pro-
posed modules on network performance, this article conducts
incremental analysis of the proposed modules on each dataset

step by step. Specifically, the visualization of classification
results using different strategies on the IN dataset is shown in
Fig. 14. Fig. 14(a) shows a visualization of the classification
results of the basic network (i.e., FCAN_AKF only removes
NBR, AKF, and DPSSA modules). Fig. 14(b) shows a visu-
alization of the classification results obtained by adding the
DPSSA module to the basic network. Obviously, compared to
Fig. 14(a), Fig. 14(b) shows more clustering among the same
classes and more dispersion among different classes. This
indicates that the classification performance of the network
has been effectively improved by the DPSSA module. Based
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TABLE II
CLASSIFICATION RESULTS ON IN

on Fig. 14(b), Fig. 14(c) has added AKF. Similarly, compared
to Fig. 14(b), the classification performance of the network
has once again been improved. Finally, Fig. 14(d) shows a
visualization of the classification results obtained from the
complete FCAN_AKF network. Compared with the previous
strategies, the optimal classification performance is achieved
by the complete FCAN_AKF. In addition, as shown in Figs. 15
and 16, the same conclusions can also be obtained on the SV
dataset and the UP dataset. This proves that the three proposed
modules do not interfere with each other, and the classification
performance of the network shows an incremental improve-
ment with their addition.

In addition, in order to reduce the parameter quantity of
FCAN_AKF, DSC is introduced into FCAN_AKF. In order
to verify the impact of DSC on the number of network
parameters, some ablation experiments were carried out to
evaluate the parameter quantity of FCAN_AKF with and
without DSC. The experimental results are shown in Fig. 17.
Obviously, on all these datasets, the parameter quantity of the
network can be significantly reduced by DSC, which proves
the effectiveness of the designed lightweight network.

D. Analysis of Classification Performance of FCAN_AKF

In this section, the classification performance of the pro-
posed FCAN_AKF network was analyzed. As shown in
Fig. 18, in order to analyze the classification performance
of each class, the confusion matrix of FCAN_AKF on three

Fig. 17. Impact of DSC on network parameter quantity.

datasets is given here. In Fig. 18, the real labels are represented
by the horizontal axis, and the predicted labels are represented
by the vertical axis. In addition, the diagonal represents that
the predicted labels are the same as the real labels, which
means that the network predicts accurate labels. In general,
all three challenging datasets can be effectively classified by
FCAN_AKF. On the one hand, it indicates that FCAN_AKF
has significant classification performance. On the other hand,
different datasets can be adapted by FCAN_AKF, indicating
that FCAN_AKF has excellent generalization ability. This is
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Fig. 18. Confusion matrix obtained by FCAN_AKF on different datasets: (a) confusion matrix of IN dataset; (b) confusion matrix of SV dataset; and
(c) confusion matrix of the UP dataset.

because the proposed method establishes the interaction of
long-range spectral information and achieves complementarity
between local and nonlocal features. In addition, the interfer-
ence of redundant information is also effectively alleviated by
FCAN_AKF. However, a small amount of misclassification is
still inevitable. And these misclassification situations almost
all occur between adjacent class boundaries. This is also what
we need to focus on in the future work.

E. Analysis of Classification Performance of FCAN_AKF

In order to further verify the effectiveness of the pro-
posed network, this section will include the proposed
FCAN_AKF that was compared with seven CNN-based
HSIC methods. These seven methods include: double-
branch multi-attention (DBMA) [26], DBDA [27], spectral–
spatial transformer network (SSTN) [28], hierarchical residual

network with attention mechanism (HResNetAM) [29], homo-
geneous pixel detection module-spectral partitioning resid-
ual network (HPDM-SPRN) [45], attention-based adaptive
spectral–spatial kernel ResNet (A2S2KResNet) [46], and feed-
back expansion convolution network (FECNet) [47]. The
classification results and parameter quantities of different
methods on three datasets are shown in Tables II–IV.

First, the best classification performance can be achieved
by the proposed FCAN_AKF on all three datasets. Moreover,
in terms of the overall parameter quantity of the network,
FCAN_AKF also has significant advantages compared to other
methods. Specifically, the classification results and parameter
quantities of all methods on the IN dataset are presented in
Table II. From the classification results, compared to other
methods, the proposed FCAN_AKF has significant advantages
in OA, AA, and KAPPA coefficients. Especially for OA and
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Fig. 19. Classification maps using different methods on the IN dataset: (a) real map; (b) DBMA; (c) DBDA; (d) HPDM-SPRN; (e) SSTN; (f) A2S2KResNet;
(g) HResNetAM; (h) FECNet; and (i) FCAN_AKF.

Fig. 20. Classification maps using different methods on the SV dataset: (a) real map; (b) DBMA; (c) DBDA; (d) HPDM-SPRN; (e) SSTN; (f) A2S2KResNet;
(g) HResNetAM; (h) FECNet; and (i) FCAN_AKF.

KAPPA coefficients, FCAN_AKF is 1%–5% higher than other
methods. This not only indicates that the overall classification
performance of the proposed method is significant, but also
indicates that FCAN_AKF can classify each class in a bal-

anced manner, with good classification consistency. On the
one hand, it benefits from the fusion and complementarity
of local and nonlocal features. On the other hand, with
the help of DPSSA and AKF, the redundant information
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Fig. 21. Classification maps using different methods on the UP dataset: (a) real map; (b) DBMA; (c) DBDA; (d) HPDM-SPRN; (e) SSTN; (f) A2S2KResNet;
(g) HResNetAM; (h) FECNet; and (i) FCAN_AKF.

Fig. 22. Classification accuracy of all methods under different training samples: (a) IN; (b) SV; and (c) UP.

of interference classification can be effectively removed by
FCAN_AKF. From the overall parameter quantity of the
network, compared to other methods, the proposed method
has also significant advantages on the IN dataset. Specifically,
the proposed FCAN_AKF has only 59.382k parameters, which

is approximately 6k–700k lower than other methods. This is
due to the simple network architecture design of FCAN_AKF,
and additional parameters will not be introduced. Moreover,
a DSC is used by FCAN_AKF when extracting features,
which significantly reduces the number of network parameters
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TABLE III
CLASSIFICATION RESULTS ON SV

TABLE IV
CLASSIFICATION RESULTS ON UP

and does not affect the classification performance of the
network.

The classification results and parameter quantities of all
methods on the SV are shown in Table III. Compared to the
IN dataset, the SV dataset has a richer amount of data for
training. Therefore, all methods can achieve good classification
accuracy on the SV dataset. Nevertheless, compared to other
methods, the FCAN_AKF still exhibits more competitive

classification results. Similarly, as shown in Table IV, com-
pared to other methods, FCAN_AKF also has significant
advantages in classification results on UP. This once again
proves that the FCAN_AKF has significant classification per-
formance and good generalization ability.

In addition, the running times of different methods are also
shown in Tables II and III. It can be seen that the running
time of the proposed FCAN_AKF is only higher than that
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of HPDM-SPRN and HResNetAM. For most methods, the
running time of FCAN_AKF still has certain advantages.

As shown in Figs. 19–21, in order to compare the clas-
sification performance of different methods more intuitively,
the classification results of all methods were visualized in this
section. The classification map of all methods on the IN is
shown in Fig. 19. As shown in Fig. 19, among all the methods,
the classification maps of DBMA and DBDA perform poorly
compared to other methods. This is because these two methods
only simply combine spatial–spectral attention and fail to fully
extract HSI features, while the classification maps of other
methods all have clear class boundaries. Specifically, com-
pared to classification maps of other methods, the classification
map of FCAN_AKF not only has clear class boundaries, but
also can better distinguish different classes. This is due to the
redundancy information in FCAN_AKF being eliminated by
AKF, avoiding mutual interference between different classes.
In addition, conclusions similar to those on the IN dataset can
also be obtained on the SV and UP datasets.

The number of training samples determines the amount
of prior information used for classification in supervised
classification tasks. Therefore, the small sample problem has
always been one of the main challenges in HSIC. Considering
the importance of training samples in supervised classifica-
tion networks, the classification performance of the proposed
method under different training samples was analyzed in
this section. Specifically, the proposed FCAN_AKF is com-
pared with seven methods. The classification accuracy of all
methods using different proportions of training sample on
three datasets is shown in Fig. 22. As shown in Fig. 22(a),
on the IN dataset, the classification accuracy of all methods
shows an upward trend with the increase of samples. More-
over, compared with other methods, the optimal classification
accuracy can be achieved by FCAN_AKF under different
proportions of training samples. Specifically, the advantage of
FCAN_AKF’s classification performance is more significant
when the number of training samples is smaller. This indi-
cates that compared to other methods, the FCAN_AKF can
also effectively classify under limited training samples. In
addition, as the proportions of training samples increase, the
classification accuracy of FCAN_AKF is steadily improved,
indicating that FCAN_AKF has strong robustness.

IV. CONCLUSION

In order to establish the interdependence between
close-range spectral information and long-range spectral infor-
mation and effectively alleviate the interference of redundant
information on the network, an FCAN_AKF is proposed
in this article. First, in order to alleviate the problem that
it is difficult to establish long-range interaction of spectral
information due to the limited receptive field of CNNs,
an NBR strategy was designed. After the spectral information
is regrouped by NBR, FCAN_AKF can also establish the
interdependence between the close-range spectral information
and the long-range spectral information in the case of a limited
receptive field. In addition, the nonlocal features after spectral
regrouping are combined with the local features of the original
HSIs by FCAN_AKF to achieve effective classification. Then,

in order to address the interference of redundant informa-
tion on the network, a DPSSA was proposed and used to
capture spectral–spatial attention. DPSSA enhances important
feature information and suppresses irrelevant features through
autocorrelation. Subsequently, an AKF was designed to fur-
ther alleviate the interference of redundant information. The
redundant information that interferes with network classifi-
cation can be filtered out by AKF, and important features
beneficial to classification can be enhanced. In addition, AKF
achieves adaptive filtering of redundant information and gains
important features through network training iterations. Finally,
the FCAN_AKF proposed in this article has been proven to
have better classification performance than some state-of-the-
art methods through extensive experiments.
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